NIFS Data Reduction

Richard McDermid
Gemini Data Reduction Workshop
Tucson, July 2010
IFU Zoo: How to map 3D on 2D

NIFS

Telescope Focus

Spectrograph Input

Spectrograph Output

Final Output Data Cube

Image Slicer

Lens Array + Fibers

“Spaxel”

Pure Lens Array
IFU Techniques: Image Slicer

Pros:
- Compact design
- High throughput
- Easy cryogenics

Cons:
- Difficult to manufacture
Rectangular Pixels

- NIFS has different (x,y) spatial sampling
- *Along the slice* is sampled by the *detector*
- *Across the slice* is sampled by the *slicer*
- Cross-slice sets spectral PSF - should be sampled on ~2 pixels
- Gives rectangular spaxels on the sky
NIFS

- Near-infrared Integral Field Spectrograph
- Cryogenic slicer design
- Z,J,H,K bands, R~5,000
- One spatial setting:
 - 3”x3” FoV
 - 0.1”x0.04” sampling
- Optimized for use with AO
- Science: young stars, exo-planets, solar system, black holes, jets, stellar populations, hi-z galaxies....
Typical NIFS Observation

• ‘Before’ telluric star
 – NGS-AO
 – Acquire star
 – Sequence of on/off exposures
 – Same instrument config as science (inc. e.g. field lens for LGS)

• Science observation
 – Acquisition
 – Observation sequence:
 • Arc (grating position is not 100% repeatable)
 • Sequence of on/off exposures

• ‘After’ telluric (if science >~1.5hr)

• Daytime calibrations:
 – Baseline set:
 • Flat-lamps (with darks)
 • ‘Ronchi mask’ flats (with dark)
 • Darks for the arc
 – Darks for science (if sky emission to be used for wavelength calibration)
Typical NIFS Data

Science Object

Arc Lamp

Flat Lamp

Ronchi Mask

Slice

Wavelength
Arranging your files - suggestion

Daycals/ - All baseline daytime calibrations

YYYYMMDD/ - cals from different dates

Science/ - All science data

Obj1/ - First science object

YYYYMMDD/ - First obs date (if split over >1 nights)

Config/ - e.g. ‘K’ (if using multiple configs)

Telluric/ - telluric data for this science obs

Merged/ - Merged science and subsequent analysis

Scripts/
NIFS Reduction: Example scripts

• Three IRAF scripts on the web:
 – Calibrations
 – Telluric
 – Science
• Form the basis of this tutorial
• Data set:
 – Science object (star)
 – Telluric correction star
 – Daytime calibrations
• Update the path and file numbers at the top of each script
• Excellent starting point for basic reduction
Lamp Calibrations

• Three basic calibrations:
 – Flat (DAYCAL)
 • Correct for transmission and illumination
 • Locate the spectra on the detector
 – Ronchi Mask (DAYCAL)
 • Spatial distortion
 – Arc (NIGHTCAL)
 • Wavelength calibration

• Each has associated dark frames
• May have multiple exposures to co-add
• DAYCAL are approx. 1 per observation date
• NIGHTCAL are usually once per science target, but can be common between targets if grating config not changed
Calibration 1: Flat-Field

• Step 1: Locate the spectra
 – Mask Definition File (MDF) provides relative location of slices on detector
 – Use nfprepare to match this to the absolute position for your data:

```
nfprepare(calflat, rawpath=raw_data, outpref="s", shiftx=INDEF, shifty=INDEF, fl_vardq-, fl_corr-, fl_nonl-)
```

 – Offset is stored in a new image
 – This exposure is then referenced in subsequent steps that need to know where the spectra are on the chip
Calibration 1: Flat-Field

- Step 2.1: Update flat images with offset value
- Step 2.2: Generate variance and data quality extensions
- Nfprepare is called again (once) to do both these tasks:

```bash	nfprepare("@flatlist", rawpath=raw_data, shiftim="s"//calflat, fl_vardq+, fl_int+, fl_corr-, fl_nonl-)
```

- Apply same process to dark frames
Calibration 1: Flat-Field

- Step 2.3: Combine flats and darks using `gemcombine`:

```plaintext
gemcombine("n//@flatlist", output="gn"/"calflat," fl_dqpr+, fl_vardq+, masktype="none", logfile="nifs.log")
```

- Repeat for darks…
- Now have 2D images with DQ and VAR extensions. Ready to go to 3D…
Calibration 1: Flat-Field

- **Step 3.1**: Extract the slices using nsreduce:
 - 'cut' out the slices from the 2D image
 - Apply first order wavelength coordinate system

  ```
  nsreduce("gn"//calflat, fl_nscut+, fl_nsappw+, fl_vardq+, fl_sky-, fl_dark-, fl_flat-, logfile="nifs.log")
  ```

- **Step 3.2**: Create slice-by-slice flat field using nsflat:
 - Output flat image
 - Lower and Upper limits for 'bad' pixels

  ```
  nsflat("rgn"//calflat, darks="rgn"//flatdark, flatfile="rn"//calflat//"_sflat", darkfile="rn"//flatdark//"_dark", fl_save_dark+, process="fit", thr_flo=0.15, thr_fup=1.55, fl_vardq+, logfile="nifs.log")
  ```

- Divides each spectrum (row) in a slice by a fit to the average slice spectrum, with coarse renormalizing
- Also creates a bad pixel mask from the darks
Calibration 1: Flat-Field

• Step 3.3: Renormalize the slices to account for slice-to-slice variations using nsslitfunction:

- Fits a function in spatial direction to set slice normalization
- Outputs the final flat field, with both spatial and spectral flat information

nsslitfunction("rgn"//calflat, "rn"//calflat//"_flat", flat="rn"//calflat//"_sflat", dark="rn"//flatdark//"_dark", combine="median", order=3, fl_vary-, logfile="nifs.log")
Calibration 1: Flat-Field

Set illumination bins

GCALflat

Bin for fitting slit function
Calibration 1: Flat-Field

Determine illumination interactively for tempflat7480toc[SCI,2] at bin GCALflat

Fit to illumination along slice
Calibration 2: Wavelength Calibration

• Step 1: Repeat nfprepare, gemcombine and nsreduce -> extracted slices

• Step 2: Correctly identify the arc lines, and determine the dispersion function for each slice
 – Should run this interactively the first time through to ensure correct identification of lines and appropriate fit function
 – First solution is starting point for subsequent fits
 – Should robustly determine good solution for subsequent spectra

• Result is a series of files in a ‘database/’ directory containing the wavelength solutions of each slice

```
nswavelength("rgn" // arc, coordli=clist, nsum=10, thresho=my_thresh, trace=yes, fwidth=2.0, match=-6, cradius=8.0, fl_inter+, nfound=10, nlost=10, logfile="nifs.log")
```
Calibration 2: Wavelength Calibration

NLDO/IRAF V2.14.1 rmdcdermi@teracles.local Tue 19:39:26 20-Jul-2010
func=chebyshev, order=4, low_rej=3, high_rej=3, niterate=10, grow=0
total=29, sample=29, rejected=3, deleted=0, RMS= 0.1087
Calibration 2: Wavelength Calibration
Calibration 3: Spatial Distortion

- Need to correct for distortions along the slices, and registration between slices
- This is done using the Ronchi mask as a reference
- Analogous to wavelength calibration, but in spatial domain
NIFS: Ronchi Mask

One slice
NIFS: Ronchi Mask

Transformation to make lines straight gives geometric correction
Calibration 3: Spatial Distortion

- Step 1: Repeat nfprepare, gemcombine and nsreduce -> extracted slices
- Step 2: run nfsdist
 - Reference peaks are very regular, so easy to fall foul of aliasing when run automatically
 - Recommend running interactively for each daycal set

nfsdist("rgn"//ronchiflat, fwidth=6.0, cradius=8.0, glshift=2.8, minsep=6.5, thresh=2000.0, nlost=3, fl_int+, logfile="nifs.log")

- TIP: apply the distortion correction to the Ronchi frame itself, and check its OK
Calibration 3: Spatial Distortion

TIP:
• If the peaks are shifted, try ‘i’ to initialize, then ‘x’ to fit
• Identify with ‘m’ missed peaks if possible
Calibration 3: Spatial Distortion

BAD....

Bottom slice is truncated
- Slit is extrapolated
Lamp Calibrations: Summary

You now have:
1. Shift reference file: "s"+calflat
2. Flat field: "rn"+calflat+"_flat"
3. Flat BPM (for DQ plane generation): "rn"+calflat +"_flat_bpm.pl"
4. Wavelength referenced Arc: "wrn"+arc
5. Spatially referenced Ronchi Flat: "rn"+ronchiflat

Notes:
- 1-3 are files that you need
- 4 & 5 are files with associated files in the ‘database/’ dir
- Arcs are likely together with science data
Telluric Star

• Similar to science reduction up to a point:
 – Sky subtraction
 – Spectra extraction => 3D
 – Wavelength calibration
 – Flat fielding

• Then extract 1D spectra, co-add separate observations, and derive the telluric correction spectrum
Telluric Star

• Preliminaries:
 – Copy the calibration files you will need into telluric directory:
 – Shift file
 – Flat
 – Bad pixel mask (BPM)
 – Ronchi mask + database dir+files
 – Arc file + database dir+files
 – Make two files listing filenames with (‘object’) and without (‘sky’) star in field
Telluric Star

• Step 1.1: Run nfprepare, making use of the shift file and BPM

• Step 1.2: Combine the blank sky frames:
 – Skies are close in time
 – Use gemcombine and your list of sky frames to create a median sky

• Step 1.3: Subtract the combined sky from each object frame with gemarith
Telluric Star

• Step 2.1: Run nsreduce, this time including the flat:

```bash
nsreduce("sn@telluriclist",outpref="r", flatim=cal_data//"rn"// calflat//"_flat", fl_nscut+, fl_nsappw-, fl_vardq+, fl_sky-, fl_dark-, fl_flat+, logfile=log_file)
```

• Step 2.2: Replace bad pixels with values interpolated from fitting neighbours

```bash
nffixbad("rsn@telluriclist",outpref="b",logfile=log_file)
```

– Uses the Data Quality (QD) plane
Telluric Star

• Step 3.1: Derive the 2D spectral and spatial transformation for each slice using nsfitcoords
 – This combines the ‘1D’ dispersion and distortion solutions derived separately from nswavelength and nsdist into a 2D surface that is linear in wavelength and angular scales
 – The parameters of the fitted surface are associated to the object frame via files in the database directory

```
nffitcoords("brsn@telluriclist", outpref="f", fl_int+, lamptr="wrgn"//arc, sdisttr="rgn"//ronchiflat, lxorder=3, lyorder=3, sxorder=3, syorder=3, logfile=log_file)
```
Nsfitcoords - spectral

NOAO/IRAF V2.14.1 rmdermi@teracles.local Tue 22:10:43 20-Jul-2010
Function = chebyshev, xorder = 2, yorder = 2, rms = 1.594
Fit User Coordinates to Image Coordinates for pbrsnN20100401S0146_SCI_1_
Nsfitcoords - spatial

NOAO/IRAF V2.14.1 rmdermi@teracles.local Tue 22:48:04 20-Jul-2010
Function = chebyshev, xorder = 3, yorder = 2, rms = 0.05814
Fit User Coordinates to Image Coordinates for fbrsnN20100401S0146_SCI_3_
Telluric Star

• Step 3.2: Transform the slice images to the linear physical coordinates using nstransform
 – Uses transforms defined by nsfitcoords
 – Generates slices that are sampled in constant steps of wavelength and arcsec

• This is essentially a data-cube (even though its not a cube...)
 – Can run analysis directly from this point
Telluric Star

- Step 4.1: Extract 1D aperture spectra from the data cube
 - Use nfextract to define an aperture (radius and centre) and sum spectra within it
 - Outputs a 1D spectrum
- Step 4.2: Co-add the 1D spectra using gemcombine
Science Data

• Same preliminaries as telluric:
 – Copy database and arc+Ronchi files
 – Copy shift file, flat and BPM
 – Identify sky and object frames
• In addition, we make use of the 1D telluric
• Generally need to combine separate (and dithered) data-cubes
Science Data

- Initial steps:
 - \texttt{Nfprepare} as per telluric
 - Subtract sky using \texttt{gemarith}
 - Usually have one unique sky per object: ABAB
 - Can have ABA – two science share a sky
 - \texttt{Nsreduce} (inc. flat field)
 - \texttt{Nfixbad}, \texttt{nsfitcoords}, \texttt{nstransform}

- Now have data-cube with linear physical coordinates
Science Data: Telluric correction

• Telluric spectrum is not only atmosphere, but also stellar spectrum:
 – Need to account for stellar absorption features
 – AND account for black-body continuum
• Needs some ‘by-hand’ steps to prepare the telluric star spectrum
 – Remove strong stellar features with splot
 – Remove BB shape with a BB spectrum
Science Data: Telluric correction

BB @ 8000K
Science Data: Telluric correction
Telluric Absorption

- Alternative approach is to fit a stellar template (Vacca et al. 2003)
- Need good template
- Can use solar-type stars, but needs careful treatment...
Science Data: Telluric correction

- Finally, run nftelluric
 - Computes the normalized correction spectrum
 - Allows for shifts and amplitude scaling
 - Divides the correction spectrum through the data
Science Data: Merging

• Now have series of data-cubes:
 – No dark current or sky (sky-subtracted)
 – Spatially and spectrally linearized
 – Bad pixels interpolated over
 – No instrumental transmission (flat-fielded)
 – No atmospheric transmission (telluric-corrected)

• Need to combine the data-cubes

• Will do this in three steps:
 – Convert MEF ‘cubes’ to real 3D arrays
 – Determine the relative spatial origin and adapt the WCS headers
 – Use gemcube to combine the cubes
Science Data: Merging

- Use nfcube to create the 3D arrays
 - Uses interpolation to go from series of 2D slices to one rectilinear 3D array
 - Default pixel scale is 0.05”x0.05” (arrays need square pixels..)
- These cubes are easily displayed using ds9
 - Load as an array, scroll through the slices
- Find a reference pixel coordinate
 - Should be easily recognizable in the cube
 - Should be common to all cubes
- Adapt the headers to reflect the common spatial axes origin
- Run gemcube
Science Data: Merging

• This approach involves (at least) one superfluous interpolation: nifcube + gemcube both interpolate

• Might be possible to use gemcube directly from transformed data, but may need wrapper (TBD: works on single slices, so can be adapted)

• Nifcube step is convenient for determining reference coordinate

• At least gives a way to combine your data at this point – stay tuned for updated documentation